Victory for the Quantum Code Maker?
نویسنده
چکیده
Humans have used cryptography for more than two centuries. While the first cyphers were fairly-easy-tocrack letter swapping codes, cryptographic protocols have improved over the years, and today their use for securing bank transactions and other sensitive data is widespread. However, the schemes being used today are, in principle, breakable and the privacy of our data relies on the presumed difficulty of performing the breaking algorithm in a reasonable time. This is the best we could hope for in a world governed by classical physics. But our world obeys quantum physics, whose principles allow for verifiably secure message transmission. In the last 15 years we have seen the development of protocols that promise an even stronger notion of security still, under the name of device independence. To date, deviceindependent schemes have suffered from practical drawbacks, such as low noise tolerance, or needing unrealistically many devices. Umesh Vazirani of the University of California, Berkeley, and Thomas Vidick of the California Institute of Technology, Pasadena, achieve a significant milestone by demonstrating theoretically how to remove these disadvantages, while still maintaining full security [1].
منابع مشابه
GENERALIZED JOINT HIGHER-RANK NUMERICAL RANGE
The rank-k numerical range has a close connection to the construction of quantum error correction code for a noisy quantum channel. For noisy quantum channel, a quantum error correcting code of dimension k exists if and only if the associated joint rank-k numerical range is non-empty. In this paper the notion of joint rank-k numerical range is generalized and some statements of [2011, Generaliz...
متن کاملConstacyclic Codes over Group Ring (Zq[v])/G
Recently, codes over some special finite rings especially chain rings have been studied. More recently, codes over finite non-chain rings have been also considered. Study on codes over such rings or rings in general is motivated by the existence of some special maps called Gray maps whose images give codes over fields. Quantum error-correcting (QEC) codes play a crucial role in protecting quantum ...
متن کاملTheoretical computation of the quantum transport of zigzag mono-layer Graphenes with various z-direction widths
The quantum transport computations have been carried on four different width of zigzag graphene using a nonequilibrium Green’s function method combined with density functional theory. The computed properties are included transmittance spectrum, electrical current and quantum conductance at the 0.3V as bias voltage. The considered systems were composed from one-layer graphene sheets differing w...
متن کاملTheoretical computation of the quantum transport of zigzag mono-layer Graphenes with various z-direction widths
The quantum transport computations have been carried on four different width of zigzag graphene using a nonequilibrium Green’s function method combined with density functional theory. The computed properties are included transmittance spectrum, electrical current and quantum conductance at the 0.3V as bias voltage. The considered systems were composed from one-layer graphene sheets differing w...
متن کاملFrom Quantum Cheating to Quantum Security *
For thousands of years, code-makers and code-breakers have been competing for supremacy. Their arsenals may soon include a powerful new weapon: quantum mechanics. Cryptography — the art of code-making — has a long history of military and diplomatic applications, dating back to the Babylonians. In World World Two, the Allies' feat of breaking the legendary German code, Enigma, contributed greatl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014